Pages

Thursday, February 6, 2025

The AI-Native Telco Network VI: Storage


The AI-Native Telco Network I

The AI-Native Telco Network II

The AI-Native Telco Network III

The AI-Native Telco Network IV: Compute

The AI-Native Telco Network V: Network

As it turns out, a network that needs to run AI, either to self optimize or to offer wholesale AI related services needs some adjustments from a conventional telecom network. After looking at the compute and network functions, this post is looking at storage.

Storage has, for the longest time, been an afterthought in telecoms networks. Beyond the IT workloads and the management of data centers, storage needs were usually addressed embedded with the compute functions, sold by server vendors, or when necessary as direct attached storage appliances, usually OEMd or resold by the same vendors.

Today's networks see each network function, whether physical, virtualized or containerized coming with its own dedicated storage. The data generated by each function, whether telemetry, alarm, user, or control plane, logs or event is stored first locally, then a portion is exported to a data lake for cleaning and processing, then eventually a data warehouse, whether on a private or public cloud so that OSS, BSS and analytics functions can provide dashboards on the health, load, usage of the network and recommendations on optimizations.

The extraction, cleaning, and processing of these disparate datasets takes time, anywhere between 30 minutes to hours to accurately represent the network state.

One of the applications of AI/ML in telecoms networks is to optimize the networks reactively when there is an event or proactively when we can plan for a given change. This supposes that a feedback loop is built between the analytics layer and the operational layer, whereas a recommendation to change network parameters can be executed programmatically and automatically.

Speed becomes necessary, particularly to react to unpredicted events. Reducing reaction time if there is an element outage is crucial. This supposes that the state of the network must be observable in near real time, so that the AI/ML engines can detect patterns, anomalies and provide root cause analysis and remediation as fast as possible. The compute applied to these calculations, together with the speed of transmission have a direct effect on the speed, but not only.

Storage, as it turns out is also a crucial element of creating an AI-Native network. The large majority of AI/ML relies on storing data as object, whereas each data element is stored independently, in an unstructured manner, irrespective of size, but with an associated metadata file that describes the data element in details, allowing easy association and manipulation for AI/ML.

Why are traditional storage architectures not suitable for AI-Native Networks?

To facilitate the AI Native network, data element must be extracted from their network functions fast and transferred in a data repository that allows their manipulation at scale. It is easier said than done. Legacy systems have been built originally for block storage (databases and virtual machines, great for low latency, bad for high throughput). Objects are usually not natively supported and are in separate storage. Each vendor supports different protocols and interface, and each store is single tenant to its application.

Data needs to be shared and read by many network functions simultaneously, while they are being processed. Traditional architectures see data stored individually by network functions, then exported to larger databases, then amalgamated in data lakes for processing. The process is lengthy, error-prone and negates the capacity to act/react in real time.

The data sets are increasingly varied, between large and small objects, data streams and files, random and sequential read and write requirements. Legacy storage solutions require different systems for different use cases and data sets. This lengthens further the data amalgamation necessary for automation at scale.

Data needs to be properly labeled, without limitation of metadata, annotation and tags equally for billions of small objects (event records) or very large ones (video files). Traditional storage solutions are designed either for small or large objects and struggle to accommodate both in the same architecture. They also have limitations in the amount of metadata per object. This increases cost and time to insight while reducing their capacity to evolve.

Datasets are live structures. They often exist in different formats and versions for different users. Traditional architectures are not able to handle multiple formats simultaneously, and versions of the same datasets require separate storage elements. This leads to data inconsistencies, corruption and divergence of insight.

Performance is key in AI systems, and it is multidimensional. Storage solutions need to be able to accommodate simultaneously high throughput, scale out capacity and low latency. Traditional storage systems are built for capacity but not designed for high throughput and low latency, which reduces dramatically the performance of data pipelines.

Hybrid and multi cloud become a key requirement for AI, as data needs to be exposed to access, transport, core, OSS/ BSS domains in the edge, the private cloud and the public cloud simultaneously. Traditional storage solutions necessitate adaptation, translation, duplication, and migration to be able to function across cloud boundaries, which significantly increase their cost, while reducing their performance and capabilities.

As we have seen, the data storage architecture for a telecom network becomes a strategic infrastructure decision and the traditional storage solutions cannot accommodate AI and network automation at scale.

Storage Requirements for AI-Native Networks

Perhaps the most important attribute for AI project storage is agility—the ability to grow from a few hundred gigabytes to petabytes, to perform well with rapidly changing mixed workloads, to serve data to training and production clients simultaneously throughout a project’s life, and to support the data models used by project tools.

The attributes of an ideal AI storage solution are: 

Performance Agility

          I/O performance that scales with capacity.

          Rapid manipulation of billions of items, e.g., for randomization during training.

Capacity Flexibility

          Wide range (100s of gigabytes to petabytes) .

          High performance with billions of data items.

          Range of cost points optimized for both active and seldom accessed data.

Availability & Data Durability

          Continuous operation over decade-long project lifetimes.

          Protection of data against loss due to hardware, software, and operational faults.

          Non-disruptive hardware and software upgrade and replacement.

          Seamless data sharing by development, training, and production.

Space and Power Efficiency

          Low space and power requirements that free data center resources for power-hungry computation.

Security

          Strong administrative authentication.

          “Data at rest” encryption.

          Protection against malware (especially ransomware) attacks.

Operational Simplicity

          Non-disruptive modernization for continuous long-term productivity.

          Support for AI projects’ most-used interconnects and protocols.

          Autonomous configuration (e.g. device groups, data placement, protection, etc.).

          Self-tuning to adjust to rapidly changing mixed random/ sequential I/O loads.

Hybrid and Multi Cloud Natively

          Data agility to cross cloud boundaries

          Centralized data lifecycle management

          Decide which data set is stored and processed where

          From edge for inference to private cloud for optimization and automation to public cloud for model training and replication.

Traditional "spinning disk" based storage have not been designed for AI/ML workloads. They lack the performance, agility, cost effectiveness, latency, power consumptions attributes necessary to enable AI networks at scale. Modern storage infrastructure, designed for high performance computing rely on Flash storage, an efficient, cost effective, low power, high performance technology that enables compute and network elements to perform at line rate for AI workloads.

Tuesday, January 28, 2025

The AI-Native Telco Network V: Network


The AI-Native Telco Network I

The AI-Native Telco Network II

The AI-Native Telco Network III

The AI-Native Telco Network IV: Compute

As we have seen in previous posts, AI and the journey to autonomous networks forces telco operators to look at their network architecture and reevaluate whether their infrastructure is fit for this purpose. In many cases, the first reflex for them is to deploy new servers and GPUs in AI dedicated pods and to find out that processing power itself is not enough for a high performance AI system. The network connectivity needs to be accelerated as well.

SmartNICs

While dedicated routing and packet processing are necessary, one way to increase performance of an AI pod is to deploy accelerators in the shape of Smart Network Interface Cards (SmartNICs).

SmartNICs are specialized network cards designed to offload certain networking tasks from the CPU and provide additional processing power at the network edge. Unlike traditional NICs, which merely serve as communication devices, SmartNICs come equipped with onboard processing capabilities such as CPUs, ASICs, FPGAs or programmable processors. These capabilities allow SmartNICs to handle packet processing, traffic management, and other networking tasks, without burdening the CPU.

While they are certainly hybrid compute / network dedicated silicon, they accelerate overall performance by offloading packet processing, user plane functions, load balancing, etc. from the CPUs and GPUs that can be freed up for pure AI workload processing.

For telecom providers, SmartNICs offer a way to improve network efficiency while simultaneously boosting the ability to handle AI workloads in real-time.

High-Speed Ethernet

One of the most straightforward ways to increase network speed is by adopting higher bandwidth Ethernet standards. Traditional networks may rely on 10GbE or 25GbE, but AI workloads benefit from faster connections, such as 100GbE or even 400GbE, which provide higher throughput and lower latency.

AI models, especially large deep learning models, require massive data transfer between nodes. Upgrading to 100GbE or 400GbE can drastically improve the speed at which data is exchanged between GPUs, CPUs, and storage systems in an AI pod, reducing the time required to train models and increasing throughput.

AI models often need to pull vast amounts of training data from storage. Higher-speed Ethernet allows AI pods to access data more quickly, decreasing bottlenecks in I/O.

Use Low-Latency Networking Protocols

Adopting advanced networking protocols such as InfiniBand or RoCE (RDMA over Converged Ethernet) is essential to reduce latency in AI pods. These protocols are designed to enable faster communication between nodes by bypassing traditional network stacks and reducing the overhead that can slow down AI workloads.

InfiniBand and RoCE provide extremely low-latency communication between AI pods, which is crucial for high-performance AI training and inference.
These protocols support higher bandwidths (up to 200Gbps or more) and provide more efficient communication channels, ideal for high-throughput AI workloads like distributed deep learning.

To increase AI performance, telecom operators need to focus on upgrading their network infrastructure to support the growing demands of AI workloads. By implementing strategies such as high-speed Ethernet, SmartNICs, and specialized AI interconnects, operators can enhance the speed, scalability, and efficiency of their AI pods. This enables faster processing of large datasets, reduced latency, and improved overall performance for AI training and inference, allowing telecom operators to stay ahead in the competitive AI-driven landscape.
Storage, we will see in the next post, plays also an integral part in AI performance on a telecom network.

Thursday, January 23, 2025

The AI-Native Telco Network IV: Compute

The AI-Native Telco Network I

 The AI-Native Telco Network II

 The AI-Native Telco Network III

As we have seen in previous posts, to accommodate and make use of AI at scale, a network must be tuned and architected for this purpose. While any telco network can deploy AI in discrete environments or throughout its fabric, the difference between a Data strategy and an AI strategy is speed + feedback loop.

Most Data collected in a telco network has been used for very limited purpose. Mainly archiving for forensics to determine the root cause of an anomaly or outage, charging and customer management functions or for legal interception or regulatory requirements. For these use cases, Data needs to be properly formatted and laid to rest until analytics engines can provide a representation of the state of the network or an account. Speed is not an issue here, the system can suffer minutes or hour delays before a coherent picture is formed and represented.

AI altogether can provide better insight through larger datasets than classical analytics. It provides better capacity to correlate events and to predict the evolution of the network state. It can also propose optimization, enhancements, mitigation recommendations, but to be truly effective, it needs to be able to have feedback loop to the network functions, so that these recommendations can be turned into actions and automated.


Herein lies the trick. If you want to run AI in your network, so that you can automate it, allowing it to reactively or proactively auto scale, heal, optimize its performance, power consumption, cost, etc... at scale, it cannot be done manually. Automation is necessary throughout. Speed from event, anomaly, pattern, insight detection to action becomes key.

As we have seen, speed is the product of high performance, low latency in the production, extraction, storage, and processing of data to create actionable insights that can be automated. At the fabric layer, compute, connectivity and storage are the elements that need to be properly designed to enable the speed to run AI.

In this post, we will look at the compute function. Processing, analyzing, manipulating Data requires computing capabilities. There are different architectures of computing units for different purposes.

  • The CPU (Central Processing Units) are general purpose computing, suitable for serial tasks. Multiple CPU Cores can work in parallel to enhance performance. Suitable for most telecoms functions, except real time processing. Generic CPUs are used in most telco data centers and clouds for most telco functions, from OSS, BSS to Core and transport. At the edge and the RAN, CPUs are used for Centralized Unit functions.
  • ASICs (Application Specific Integrated Circuits) are CPUs that have been designed for specific tasks or applications. They are not as versatile as other processing units but deliver the absolute highest performance in smallest footprint for specific applications. They can be found in first generation Open RAN servers to run Distributed Unit functions, as well as in specialized packet routing and packet switching (more on that in the connectivity post).
  • FPGA (Field Programmable Gate Arrays) are CPUs that can be programmed to adapt to specific workloads without necessitating complete redesign. They provide a good balance between adaptability and performance and are suitable for cryptographic and rapid data processing. They are used in telco networks in security gateways, as well as advanced routing and packet processing functions.
  • GPUs (Graphics Processing Units) feature large numbers of smaller cores, coupled with high memory bandwidth making them suitable for graphics processing and large number of parallel matrix calculations. In telco network, GPUs are starting to be introduced for AI / ML workloads in data centers and clouds (neural networks and model training), as well as in the RAN for the Distributed Unit and RAN Intelligent Controller.
  • TPUs (Tensor Processing Units) are Google's specialized processing units optimized for Tensor processing of ML and deep learning model training and inference. They are not yet used in Telco environments but can be used on Google Cloud in a hybrid scenario.
  • NPUs (Neural Processing Units) are designed for Neural Networks for deep learning processing. They are very suitable for inference tasks as their power consumption and footprint are very small. They start to appear in telco networks at the edge, and in devices.

Artificial Intelligence, Machine Learning can run on any of the above computing platform. The difference is the performance, footprint, cost and power consumption profile. We have seen lately the emergence of GPUs as the new processing unit poised to replace CPUs, ASICs and FPGAs in specialized traffic functions, using the RAN and AI as its beachhead. GPUs are key in running AI workloads at scale , delivering the performance in terms of low latency and high throughput necessary for rapid time to insight.

Their cost and power consumption forces network operators to find the right balance between the number of GPUs and their placement throughout the network, to enable both high processing power necessary for model training, in the private cloud, together with low latency for rapid inferencing and automation at the edge. While this architecture might provide the best basis for an automated or autonomous network, its cost and the rapid rate of change in GPU generations might give most a pause.

The main challenge becomes the selection of compute architecture that can provide the most capacity, speed, while remaining cost effective to procure and run. For this reason, many telco operators have decided to centralize in a first step their GPU farms, to fine tune their use cases, with limited decentralized deployments. Another avenue for exploration is the wholesaling of the compute capacity to reduce internal costs. We have seen a few GPUaaS and AIaaS initiatives recently announced.

In any cases, most operators who have deployed high capacity AI pods with GPUs, find that the performance of the overall system requires further refinement and look at connectivity as the next step in their AI-Native network journey. That will be the theme of our next post.