Showing posts with label Nokia. Show all posts
Showing posts with label Nokia. Show all posts

Monday, December 4, 2023

Is this the Open RAN tipping point: AT&T, Ericsson, Fujitsu, Nokia, Mavenir


The latest publications around Open RAN deliver a mixed bag of progress and skepticism. How to interpret these conflicting information?

A short retrospective of the most recent news:

On the surface, Open RAN seems to be benefiting from a strong momentum and delivering on its promise of disrupting traditional RAN with the introduction of new suppliers, together with the opening of traditional architecture to a more disaggregated and multi vendor model. The latest announcement from AT&T and Ericsson even would point out that the promise of reduced TCO for brownfield deployments is possible:
AT&T's yearly CAPEX guidance is supposed to reduce from a high of ~$24B to about 20B$ per year starting in 2024. If the 14B$ for 5 years spent on Ericsson RAN yield the announced 70% of traffic on Open RAN infrastructure, AT&T might have dramatically improved their RAN CAPEX with this deal.

What is driving these announcements?

For network operators, Open RAN has been about strategic supply chain diversification. The coalescence of the market into an oligopoly, and a duopoly after the exclusion of Chinese vendors to a large number of Western Networks has created an unfavorable negotiating position for the carriers. The business case of 5G relies heavily on declining costs or rather a change in the costs structure of deploying and operating networks. Open RAN is an element of it, together with edge computing and telco clouds.

For operators

The decision to move to Open RAN is mostly not any longer up for debate. While the large majority of brownfield networks will not completely transition to Open RAN they will introduce the technology, alongside the traditional architecture, to foster cloud native networks implementations. It is not a matter of if but a matter of when.
When varies for each market / operator. Operators do not roll out a new technology just because it makes sense even if the business case is favorable. A window of opportunity has to present itself to facilitate the introduction of the new technology. In the case of Open RAN, the windows can be:
  • Generational changes: 4G to 5G, NSA to SA, 5G to 6G
  • Network obsolescence: the RAN contracts are up for renewal, the infrastructure is aging or needs a refresh. 
  • New services: private networks, network slicing...
  • Internal strategy: transition to cloud native, personnel training, operating models refresh
  • Vendors weakness: Nothing better than an end of quarter / end of year big infrastructure bundle discount to secure and alleviate the risks of introducing new technologies

For traditional vendors

For traditional vendors, the innovator dilemma has been at play. Nokia has endorsed Open RAN early on, with little to show for it until recently, convincingly demonstrating multi vendor integration and live trials. Ericsson, as market leader has been slower to endorse Open RAN has so far adopted it selectively, for understandable reasons.

For emerging vendors

Emerging vendors have had mixed fortunes with Open RAN. The early market leader, Altiostar was absorbed by Rakuten which gave the market pause for ~3 years, while other vendors caught up. Mavenir, Samsung, Fujitsu and others offer credible products and services, with possible multi vendors permutations. 
Disruptors, emerging and traditional vendors are all battling in RAN intelligence and orchestration market segment, which promises to deliver additional Open RAN benefits (see link).


Open RAN still has many challenges to circumvent to become a solution that can be adopted in any network, but the latest momentum seem to show progress for the implementation of the technology at scale.
More details can be found through my workshops and advisory services.



Friday, October 20, 2023

FYUZ 2023 review and opinions on latest Open RAN announcements

 

Last week marked the second edition of FYUZ, the Telecom Infra Project's annual celebration of open and disaggregated networks. TIP's activity, throughout the year, provides a space for innovation and collaboration in telecoms network access, transport and core main domains. The working groups create deployment blueprints as well as implementation guidelines and documentation. The organization also federates a number of open labs, facilitating interoperability, conformance and performance testing.

I was not there are for the show's first edition, last year, but found a lot of valuable insight in this year's. I understand from casual discussion with participants that this year was a little smaller than last, probably due to the fact that the previous edition saw Meta presenting its Metaverse ready networks strategy, which attracted a lot of people outside the traditional telco realm. AT about 1200 attendees, the show felt busy without being overwhelming and the mix of main stage conference content in the morning  and breakout presentations in the afternoon left ample time for sampling the top notch food and browsing the booth. What I found very different in that show also, was how approachable and relaxed attendees were, which allowed for productive and yet casual discussions.

Even before FYUZ, the previous incarnation of the show, the TIP forum was a landmark show for vendors and operators announcing their progress on open and disaggregated networks, particularly around open RAN.

The news that came out of the show this year marked an interesting progress in the technology's implementation, and a possible transition from the trough of disillusion to a pragmatic implementation.

The first day saw big announcements from Santiago Tenorio, TIP's chairman and head of Open RAN at Vodafone. The operator announced that Open RAN's evaluation and pilots were progressing well and that it would, in its next global RFQ for RAN refresh, affecting over 125,000 cell sites see Open RAN gain at least 30% of the planned deployment. The RFQ is due to be released this year for selection in early 2024, as their contracts with existing vendors are due to expire in April 2025.

That same day, Ericsson’s head of networks, Fredrik Jejdling, confirmed the company's support of Open RAN announced earlier this year. You might have read my perspective on Ericsson's stance on Open RAN, the presentation did not change my opinion, but it is a good progress for the industry that the RAN market leader is now officially supporting the technology, albeit with some caveats.

Nokia, on their side announced a 5G Open RAN pilot with Vodafone in Italy, and another pilot successfully completed in Romania, on a cluster of Open RAN sites shared by Orange and Vodafone (MOCN).

While TIP is a traditional conduit for the big 5 European operators to enact their Open RAN strategy, this year saw an event dominated by Vodafone, with a somewhat subdued presence from Deutsche Telekom, Telefonica, Orange and TIM. Rakuten Symphony was notable by its absence, as well as Samsung.

The subsequent days saw less prominent announcements, but good representation and panel participation from Open RAN supporters and vendors. Particularly, Mavenir and Juniper networks were fairly vocal about late Open RAN joiners who do not really seem to embrace multivendor competition and open API / interfaces approach.


I was fortunate to be on a few panels, notably on the main stage to discuss RAN intelligence progress, particularly around the RICs and Apps emergence as orchestration and automation engines for the RAN.

I also presented the findings of my report on the topic, presentation below and moderated a panel on overcoming automation challenges in telecom networks with CI/CD/CT.


Friday, May 8, 2020

What are today's options to deploy a telco cloud?

Over the last 7 years, we have seen leading telcos embracing cloud technology as a mean to create an elastic, automated, resilient and cost effective network fabric. There has many different paths and options from a technological, cultural and commercial perspective.

Typically, there are 4 categories of solutions telcos have been exploring:

  • Open source-based implementation, augmented by internal work
  • Open source-based implementation, augmented by traditional vendor
  • IT / traditional vendor semi proprietary solution
  • Cloud provider solution


The jury is still out as to which option will prevail, as they all have seen growing pains and setbacks.

Here is a quick cheat sheet of some possibilities, based on your priorities:



Obviously, this table changes quite often, based on progress and announcements of the various players, but it can come handy if you want to evaluate, at high level, what are some of the options and pros / cons of deploying one vendor or open source project vs another.

Details, comments are part of my workshops and report on telco edge and hybrid cloud networks.

Tuesday, January 28, 2020

Announcing telco edge computing and hybrid cloud report 2020


As I am ramping up towards the release of my latest report on telco edge computing and hybrid cloud, I will be releasing some previews. Please contact me privately for availability date, price and conditions.

In the 5 years since I published my first report on the edge computing market, it has evolved from an obscure niche to a trendy buzzword. What originally started as a mobile-only technology, has evolved into a complex field, with applications in IT, telco, industry and clouds. While I have been working on the subject for 6 years, first as an analyst, then as a developer and network operator at Telefonica, I have noticed that the industry’s perception of the space has polarized drastically with each passing year.

The idea that telecom operators could deploy and use a decentralized computing fabric throughout their radio access has been largely swept aside and replaced by the inexorable advances in cloud computing, showing a capacity to abstract decentralized computing capacity into a coherent, easy to program and consume data center as a service model.

As often, there are widely diverging views on the likely evolution of this model:

The telco centric view

Edge computing is a natural evolution of telco networks. 
5G necessitates robust fibre based backhaul transport.With the deployment of fibre, it is imperative that the old copper commuting centers (the central offices) convert towards multi-purposes mini data centers. These are easier and less expensive to maintain than their traditional counterpart and offer interesting opportunities to monetize unused capacity.

5G will see a new generation of technology providers that will deploy cloud native software-defined functions that will help deploy and manage computing capabilities all the way to the fixed and radio access network.

Low-risk internal use cases such as CDN, caching, local breakout, private networks, parental control, DDOS detection and isolation, are enough to justify investment and deployment. The infrastructure, once deployed, opens the door to more sophisticated use cases and business models such as low latency compute as a service, or wholesale high performance localized compute that will extend the traditional cloud models and services to a new era of telco digital revenues.

Operators have long run decentralized networks, unlike cloud providers who favour federated centralized networks, and that experience will be invaluable to administer and orchestrate thousands of mini centers.

Operators will be able to reintegrate the cloud value chain through edge computing, their right-to-play underpinned by the control and capacity to program the last mile connectivity and the fact that they will not be over invested by traditional public clouds in number and capillarity of data centers in their geography (outside of the US).

With its long-standing track record of creating interoperable decentralized networks, the telco community will create a set of unifying standards that will make possible the implementation of an abstraction layer across all telco to sell edge computing services irrespectively of network or geography.

Telco networks are managed networks, unlike the internet, they can offer a programmable and guaranteed quality of service. Together with 5G evolution such as network slicing, operators will be able to offer tailored computing services, with guaranteed speed, volume, latency. These network services will be key to the next generation of digital and connectivity services that will enable autonomous vehicles, collaborating robots, augmented reality and pervasive AI assisted systems.

The cloud centric view:

Edge computing, as it turns out is less about connectivity than cloud, unless you are able to weave-in a programmable connectivity. 
Many operators have struggled with the creation and deployment of a telco cloud, for their own internal purposes or to resell cloud services to their customers. I don’t know of any operator who has one that is fully functional, serving a large proportion of their traffic or customers, and is anywhere as elastic, economic, scalable and easy to use as a public cloud.
So, while the telco industry has been busy trying to develop a telco edge compute infrastructure, virtualization layer and platform, the cloud providers have just started developing decentralized mini data centers for deployment in telco networks.

In 2020, the battle to decide whether edge computing is more about telco or about cloud is likely already finished, even if many operators and vendors are just arming themselves now.

Edge computing, to be a viable infrastructure-based service that operators can resell to their customers needs a platform, that allows third party to discover, view, reserve and consume it on a global scale, not operator per operator, country per country, and it looks like the telco community is ill-equipped for a fast deployment of that nature.


Whether you favour one side or the other of that argument, the public announcements in that space of AT&T, Amazon Web Services, Deutsche Telekom, Google, Microsoft, Telefonica, Vapour.io and Verizon – to name a few –will likely convince you that edge computing is about to become a reality.

This report analyses the different definitions and flavours of edge computing, the predominant use cases and the position and trajectory of the main telco operators, equipment manufacturers and cloud providers.