Showing posts with label FWA. Show all posts
Showing posts with label FWA. Show all posts

Wednesday, September 10, 2025

The 6G promise

As I attend TMForum Innovate Americas in Dallas, AI, automation and autonomous networks dominate the debates. I have long held the belief that the promise of 5G to deliver adapted connectivity to different organizations, industries, verticals and market segment was necessary for network operators to create sustainable differentiation. At Telefonica, nearly 10 years ago, I was positing that network slicing would only be useful if we were able to deliver hundreds or thousands or slices.

One of the key insights came from interactions with customers in the automotive, banking and manufacturing industries. The CIOs from these large organizations don’t want to be sold connectivity products. They don’t want the network operator to create and configure the connectivity experience. 

The CIOs from Mercedes, Ford, Magna know better what their connectivity needs are and what kind of slices would be useful than the network operators serving them. They don’t want to have to spend time educating their providers so that they can design a service for them. They don’t want to outsource the optimization of their connectivity to a third party who doesn’t understand their evolving needs. 

The growth in private networks implementations in healthcare, energy, mining, transportation and ports for instance, is a sign that there is demand in dedicated, customized connectivity products. It is also a sign that network operators have failed so far to build the slicing infrastructure and capacity to serve these use cases.

As a result, I proposed that network operators should focus on creating a platform for industries to discover, configure and consume connectivity services. This vision had a lot of prerequisites. Networks need to evolve and adopt network virtualization through separation of hardware and software, cloud native functions, centralized orchestration, stand-alone core, network slicing, the building of the platform and API exposure

A lot of progress has been made in all these categories, to the point that we see emerging the first dedicated slicing solutions for first responders, defense and industries. These slices are still mostly statically provisioned and managed by the network operators, but they will gradually grow. 

The largest issue for evolving from static to dynamic slicing and therefore moving from network operated to as a service user configurable is managing conflicts between the slices. Dedicating static capacity for each slice is inefficient and too cost prohibitive to implement at scale except for the largest governmental use cases. Dynamic slicing creation and management requires network observability, jointly with near real time capacity prediction, reservation, and attribution. 

This is where AI can provide the missing step to enable dynamic slicing for network as a service. If you can extract data from the user device, network telemetry and functions fast enough to be made available to algorithms for pattern identification in near real time, you can identify the device, user, industry, service and create the best fit connectivity, whether for a gaming console connected to a 4K TV in FWA, a business user on a video conference call, industrial collaborating robots assembling a vehicle, or a drone delivering a package.

All these use cases have different connectivity needs that are today either served by best effort undifferentiated connectivity or rigidly rule-based private networks. 

As 6G is starting to emerge, will it fulfil the 5G promises and deliver curated connectivity experiences?

Friday, July 5, 2024

Readout: Ericsson's Mobility Report June 2024

 


It has been a few years now, since Ericsson has taken to provide a yearly report on their view of the evolution of connectivity. Alike Cisco's annual internet report, it provides interesting data points on telecom technology and services' maturity, but focused on cellular technology, lately embracing fixed-wireless access and non terrestrial networks as well. 

In this year's edition, a few elements caught my attention:

  • Devices supporting network slicing are few and far in-between. Only iOS 17 and Android 13 support some capabilities to indicate slicing parameters to their underlying applications. These devices are the higher end latest smartphones, so it is no wonder that 5G Stand Alone is late in delivering on its promises, if end to end slicing is only possible for a small fraction of customers. It is still possible to deploy slicing without device support, but there are limitations, most notably slicing per content / service, while slicing per device or subscriber profile is possible.

  • RedCap (5G reduced Capability) for IoT, wearables, sensors, etc... is making its appearance on the networks, mostly as demo and trials at this stage. The first devices are unlikely to emerge in mass market availability until end of next year.

  • Unsurprisingly, mobile data traffic is still growing, albeit at a lower rate than previously reported with a 25% yearly growth rate or just over 6% quarterly. The growth is mostly due to smartphones and 5G penetration and video consumption, accounting for about 73% of the traffic. This traffic data includes Fixed Wireless Access, although it is not broken down. The rollout of 5G, particularly in mid-band, together with carrier aggregation has allowed mobile network operators to efficiently compete with fixed broadband operators with FWA. FWA's growth, in my mind is the first successful application of 5G as a differentiated connectivity product. As devices and modems supporting slicing appear, more sophisticated connectivity and pricing models can be implemented. FWA price packages differ markedly from mobile data plans. The former are mostly speed based, emulating cable and fibre offering, whereas the latter are usually all you can eat best effort connectivity.

  • Where the traffic growth projections become murky, is with the impact of XR services. Mixed, augmented, virtual reality services haven't really taken off yet, but their possible impact on traffic mix and network load can be immense. XR requires a number of technologies to reach maturity at the same time (bendable / transparent screens, low power, portable, heat efficient batteries, low latency / high compute on device / at the edge, high down/ up link capabilities, deterministic mash latency over an area...) to reach mass market and we are still some ways away from it in my opinion.

  • Differential connectivity for cellular services is a long standing subject of interest of mine. My opinion remains the same: "The promise and business case of 5G was supposed to revolve around new connectivity services. Until now, essentially, whether you have a smartphone, a tablet, a laptop, a connected car, an industrial robot and whether you are a working from home or road warrior professional, all connectivity products are really the same. The only variable are the price and coverage.

    5G was supposed to offer connectivity products that could be adapted to different device types, verticals and industries, geographies, vehicles, drones,... The 5G business case hinges on enterprises, verticals and government adoption and willingness to pay for enhanced connectivity services. By and large, this hasn't happened yet. There are several reasons for this, the main one being that to enable these, a network overall is necessary.

    First, a service-based architecture is necessary, comprising 5G Stand Alone, Telco cloud and Multi-Access Edge Computing (MEC), Service Management and Orchestration are necessary. Then, cloud-native RAN, either cloud RAN or Open RAN (but particularly the RAN Intelligent Controllers - RICs) would be useful. All this "plumbing" to enable end to end slicing, which in turn will create the capabilities to serve distinct and configurable connectivity products.

    But that's not all... A second issue is that although it is accepted wisdom that slicing will create connectivity products that enterprises and governments will be ready to pay for, there is little evidence of it today. One of the key differentiators of the "real" 5G and slicing will be deterministic speed and latency. While most actors of the market are ready to recognize that in principle a controllable latency would be valuable, no one really knows the incremental value of going from variable best effort to deterministic 100, 10 or 5 millisecond latency.

    The last hurdle, is the realization by network operators that Mercedes, Wallmart, 3M, Airbus... have a better understanding of their connectivity needs than any carrier and that they have skilled people able to design networks and connectivity services in WAN, cloud, private and cellular networks. All they need is access and a platform with APIs. A means to discover, reserve, design connectivity services on the operator's network will be necessary and the successful operators will understand that their network skillset might be useful for consumers and small / medium enterprises, but less so for large verticals, government and companies." Ericsson is keen to promote and sell the "plumbing" to enable this vision to MNOs, but will this be sufficient to fulfill the promise?

  • Network APIs are a possible first step to open up the connectivity to third parties willing to program it. Network APIs is notably absent from the report, maybe due to the fact that the company announced a second impairment charge of 1.1B$ (after a 2.9B$ initial write off) in less than a year on the 6.2B$ acquisition of Vonage.

  • Private networks are another highlighted trend in the report with a convincing example of an implementation with Northstar innovation program, in collaboration with Telia and Astazero. The implementation focuses on automotive applications, from autonomous vehicle, V2X connectivity, remote control... On paper, it delivers everything operators dream about when thinking of differentiated connectivity for verticals and industries. One has to wonder how much it costs and whether it is sustainable if most of the technology is provided by a single vendor.

  • Open RAN and Programmable networks is showcased in AT&T's deal that I have previously reported and commented. There is no doubt that single vendor automation, programmability and open RAN can be implemented at scale. The terms of the deal with AT&T seem to indicate that it is a great cost benefit for them. We will have to measure the benefits as the changes are being rolled out in the coming years.